AWS Sagemaker
LiteLLM supports Llama2 on Sagemaker
API KEYS​
!pip install boto3 
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
Usage​
import os 
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
            model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b", 
            messages=[{ "content": "Hello, how are you?","role": "user"}],
            temperature=0.2,
            max_tokens=80
        )
Passing credentials as parameters - Completion()​
Pass AWS credentials as parameters to litellm.completion
import os 
from litellm import completion
response = completion(
            model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
            messages=[{ "content": "Hello, how are you?","role": "user"}],
            aws_access_key_id="",
            aws_secret_access_key="",
            aws_region_name="",
)
Usage - Streaming​
Sagemaker currently does not support streaming - LiteLLM fakes streaming by returning chunks of the response string
import os 
from litellm import completion
os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""
response = completion(
            model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b", 
            messages=[{ "content": "Hello, how are you?","role": "user"}],
            temperature=0.2,
            max_tokens=80,
            stream=True,
        )
for chunk in response:
    print(chunk)
AWS Sagemaker Models​
Here's an example of using a sagemaker model with LiteLLM
| Model Name | Function Call | 
|---|---|
| Meta Llama 2 7B | completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b', messages=messages) | 
| Meta Llama 2 7B (Chat/Fine-tuned) | completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b-f', messages=messages) | 
| Meta Llama 2 13B | completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b', messages=messages) | 
| Meta Llama 2 13B (Chat/Fine-tuned) | completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b-f', messages=messages) | 
| Meta Llama 2 70B | completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b', messages=messages) | 
| Meta Llama 2 70B (Chat/Fine-tuned) | completion(model='sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b-b-f', messages=messages) |